A plactic algebra of extremal weight crystals and the Cauchy identity for Schur operators

نویسنده

  • Jae-Hoon Kwon
چکیده

We give a new bijective interpretation of the Cauchy identity for Schur operators which is a commutation relation between two formal power series with operator coefficients. We introduce a plactic algebra associated with the Kashiwara’s extremal weight crystals over the Kac–Moody algebra of type A+∞, and construct a Knuth type correspondence preserving the plactic relations. This bijection yields the Cauchy identity for Schur operators as a homomorphic image of its associated identity for plactic characters of extremal weight crystals, and also recovers Sagan and Stanley’s correspondence for skew tableaux as its restriction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crystal bases and combinatorics of infinite rank quantum groups

The tensor powers of the vector representation associated to an infinite rank quantum group decompose into irreducible components with multiplicities independant of the infinite root system considered. Although the irreducible modules obtained in this way are not of highest weight, they admit a crystal basis and a canonical basis. This permits in particular to obtain for each familly of classic...

متن کامل

Higher Derivations Associated with the Cauchy-Jensen Type Mapping

Let H be an innite dimensional Hilbert space and K(H) be the set of all compactoperators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate ofhigher derivation and higher Jordan derivation on K(H) associated with the following Cauchy-Jensentype functional equation 2f((T + S)/2+ R) = f(T ) + f(S) + 2f(R) for all T, S, R are in K(...

متن کامل

Hyperinvariant subspaces and quasinilpotent operators

For a bounded linear operator on Hilbert space we define a sequence of the so-called weakly extremal vectors‎. ‎We study the properties of weakly extremal vectors and show that the orthogonality equation is valid for weakly extremal vectors‎. ‎Also we show that any quasinilpotent operator $T$ has an hypernoncyclic vector‎, ‎and so $T$ has a nontrivial hyperinvariant subspace‎.

متن کامل

Combinatorics of Ribbon Tableaux

This thesis begins with the study of a class of symmetric functions {x} which are generating functions for ribbon tableaux (hereon called ribbon functions), first defined by Lascoux, Leclerc and Thibon. Following work of Fomin and Greene, I introduce a set of operators called ribbon Schur operators on the space of partitions. I develop the theory of ribbon functions using these operators in an ...

متن کامل

The Shifted Plactic Monoid

We introduce a shifted analog of the plactic monoid of Lascoux and Schützenberger, the shifted plactic monoid. It can be defined in two different ways: via the shifted Knuth relations, or using Haiman’s mixed insertion. Applications include: a new combinatorial derivation (and a new version of) the shifted Littlewood-Richardson Rule; similar results for the coefficients in the Schur expansion o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011